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A new method is proposed for the selection of the particle to be perturbed in the single- 
particle move Metropolis Monte Carlo method which combines many advantages of the 
previously used random and cyclic methods. Ergodicity and relative efficiency are discussed. 
A numerical comparison is presented on a system of 45 Lennard-Jones particles. 

1. INTRODUCTION 

The present paper deals with the introduction of a new method-called the shuffled 
cyclic method-for selecting the particle to be perturbed in a single particle move 
Metropolis Monte Carlo method and its analysis, along with the analysis of the two 
conventional methods: the cyclic and random methods [ 11. 

In general, the discussion of a new algorithm requires two points: correctness and 
competitiveness. For the case of a stochastic algorithm, besides proving that the 
algorithm gives the correct answer in some infinite limit, the problem of ergodicity 
must be dealt with as well. Yet, the competitive comparison of algorithms is a 
problem that is in general ill-defined since: (a) Different criteria usually lead to 
different ranking-reflecting the fact that their strong points lie at different aspects of 
the problem; (b) the comparison depends on the actual choice of the system’s 
parameters; (c) the modification of one algorithm in a system of algorithms may 
effect the efficiency of other algorithms in the system not under discussion. 

The organization of the paper is as follows. Section 2 presents a general description 
of the three methods under discussion, Section 3 contains the analysis of the 
ergodicity of the cyclic and shuffled cyclic methods, and Section 4 compares different 
aspects of the three methods and presents a numerical comparison. The results of the 
paper are discussed in Section 5. 

Throughout the paper we call the attempted moves perturbations and reserve the 
term move for actual (accepted) moves. 
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2. THE DESCRIPTION OF THE THREE METHODS 

In the Monte Carlo calculations that are in the literature, the particle to be 
perturbed is selected either randomly (most of the time, but not always, with uniform 
distribution) or cyclicly, that is, repeatedly in a fixed sequence. It has been shown, by 
Woods, that the cyclic method leads to the same expectation value as the random 
method [ 11. The question of its ergodicity will be discussed in the next section. 

It should be pointed out first, as a drawback of the cyclic method, that it cannot be 
used for grand-canonical ensemble simulations, where the number of particles varies 
during the simulation. 

An attractive feature of the cyclic method is that it ensures that all particles are 
perturbed the same number of times, and, after k cycles, each particle has been 
perturbed exactly k times. As a result, near-neighbour tables (an important device to 
speed up the calculation on large systems) will be required much less frequently, and 
averages computed after k cycles only (another, although less important time-saving 
device) will be more accurate. Furthermore, an approximate argument, presented in 
Section 4.2, and the numerical example presented in Section 4.3, will demonstrate that 
the correlation between the successive moves of the same particle, called cage-effect 
[2], will be reduced. On the other hand, successive steps in the Markov chain will 
necessarily be more correlated as a result of the fixed sequence of the perturbations. 

The compromise solution proposed here is the shuffled cyclic method: for each 
cycle generate a random permutation of N elements (N being the number of particles 
considered) and use this sequence. Thus, with minimal extra work, much of the 
correlation between the successive steps of the Markov chain can be removed while 
the advantages of the cyclic method can still be retained. 

3. THE ERGODICITY OF THE CYCLIC METHODS 

The proposed shuflled cyclic method has the further advantage over the cyclic 
method that it is always ergodic on a system where the random procedure is ergodic. 
We will prove the following: 

THEOREM 1. If the random procedure is ergodic on a given system then the 
shufled cyclic procedure is ergodic as well. 

Proof: The ergodicity of the random procedure implies the existence of a 
sequence of configurations 

s, = (X, ) x+1..., Xk), x:=x,, (1) 

for any two configurations X,, X,, where Xf: can be obtained from X2:\ by an 
allowed move of the i,th particle. In order to prove the theorem, we will construct a 
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sequence S,, that has S, as a subsequence and is realizable by a shuflled cyclic 
procedure. The sequence S,, will be of the form 

s,, = (X,, xv, s,, x2, s, ,..., Sn-l, X)), (2) 

where Si is a sequence of configurations on the empty sequence. The proof is by 
induction. 

Since it is possible to select i, as the first particle of the first cycle, the sequence 
(X,, X:) is realizable with the shuflled cyclic method. Assume that we have 
constructed the sequence 

s;, = (X,, xy, s, )...) Skml, X2). (3) 

The following possibilities can occur: (a) It is possible to choose ik+, as the next 
particle to be perturbed in the cycle (the previous cycle was just completed or ik+ 1 
has not been perturbed yet in the current cycle). In that case Sk is the empty sequence 
and St:’ is realizable by the shuffled cyclic method. (b) ik+, has already been 
perturbed in the present cycle, but it is possible to find perturbations for the 
remaining particles that can be rejected with finite probability. In this case Sk is 
again the empty sequence and St,+ ’ is realizable by the shuffled cyclic method. (c) 
ik+l has already been perturbed in the present cycle and for some of the remaining 
particles there is no perturbation that can be rejected. In this case, however, these 
particles can also be selected as the first particles to be perturbed in the next cycle 
and their move can be chosen to cancel the previous “forced” move. After the 
restoration of the configuration X2, one can select ik+, as the next particle to be 
perturbed. Thus St: i was found realizable by the shuffled cyclic method in this case 
too, with S, the sequence of the “forced” moves and their reversals. 

The case of the cyclic method is more involved since the analogous theorem is not 
true. A simple counterexample is a spin-lattice at infinite temperature [3]. Another 
counterexample, at finite temperatures, is presented by Friedberg and Cameron 141. 
The analogous theorem can be proved, however, for systems in the (continuous) 
configuration space. 

THEOREM 2. If the random procedure is ergodic for a system of Nparticles in the 
conJguration space, then the cyclic method will be ergodic too, provided that 
arbitrary small displacements are allowed in the procedure. 

ProoJ If the random procedure is ergodic, then for every pair of orientations X,, 
X, there is a sequence of orientations 

s, = (X,, xy )...) Xk), x:=x,, (4) 

such that X2 can be obtained from Xt:; by moving the i,th particle. Furthermore, 
there is a neighborhood sk(Xk) of X$ within which any point can substitute 
X&--otherwise the path between X, and X, can be realized only with zero 
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probability. Again, we will show the existence of an alternative sequence connecting 
X, and X, that can be realized by the cyclic method. 

A configuration X will be called non-maximal with respect to particle i if the 
probability of rejecting a perturbation of i is greater than zero. This requires that 
there should be another configuration X’ (in a countable space) or a set of measures 
greater than zero (in the continuous configuration space) that can be reached from X 
by a single move of particle i and U(X)/kT < U(X’)/kT. Here U(X) is the internal 
energy of the configuration X, T is the absolute temperature, and k is the Boltzmann 
constant. 

Any sequence (X2?,, Xk) can be realized by a full cycle if the configuration Xi_, 
is non-maximal with respect to the particles l,..., i, - 1, i, + l,..., N. If, however 7 X2:; 
is not non-maximal with respect to particles m,,..., m4, then these particles have to be 
moved in the cycle. Since a move can be arbitrarily small, we can choose these moves 
small enough that for each i < q, the subsequent points of the sequence (Xx..., X(Cl,), 
i, = mi, will be changed only with an amount small enough that the modified 
sequence (Xiix,..., Xi!!;‘) will still be realizable by the random procedure. Then, when 
the particle mi is to be moved again, the move that was made by the random 
procedure is to be modified so that the coordinates of the m&h particle coincide with 
the original configuration Xp in the sequence. 

Following this procedure, the modified sequence either ends a X, or at a-point in 
s,(X,). In the latter case, two cycles can move this sequence to X,. In the first cycle 
thus all particles are to be moved. These moves are now chosen to produce the final 
configuration X, , 

For the case of systems with finite or countable infinite states only some restricted 
statements can be made. It can be immediately seen that in this case: (a) The random 
method is ergodic if (but not only if) U/kT is finite at all states; (b) the ergodicity of 
the random method implies the ergodicity of the cyclic method if all states are 
nonmaximal with respect to all particles. 

It can also be shown that 

THEOREM 3. If for any two states St, S,k a the f particle k that can be connected 
by a single move there is a state S: such that the transitions St + S: and Sf + Sk are 
both allowed, then the ergodicity of the random method implies the ergodicity of the 
cyclic method., 

Proof: The theorem is proved when it is shown that any transition Si --f Si that 
can be realized with the move of a single particle, say k, can also be realized by 
complete cycle(s). Actually, at most two cycles are needed. 

If both the initial and the final states are non-maximal with respect to all of the 
particles, then it is possible to reject the perturbation of all but the kth particle, thus 
achieving the transition St + S,k in one full cycle. If not, all particles that can be 
moved at all are to be moved in the first cycle. Particle k is to be moved to state St, 
whose existence is ensured by the condition of Theorem 3 and the others are moved 
arbitrarily. In the second cycle particle k is to be moved to Sk and the other moved 
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particles are to be returned to their original state. This achieves the required move in 
two full cycles. 

4. COMPARISON OF THE THREE PROCEDURES 

This section presents three different analyses. First, the Markov chain will be 
considered as a sequence of independent random configurations. Second, the extent of 
the cage-effect will be examined for the three methods. Third, a numerical example 
will be presented. 

4.1. Considerations under the Independence Assumption 

In Section 2 it was pointed out that both the cyclic and the shuffIed cycles methods 
perturb each particle the same number of times. Besides the advantages mentioned 
earlier it can be shown that under the independence assumption the efftciency of the 
algorithm is improved by this property. 

The extent to which a given calculation covers the configuration space can be 
charaterized by the displacement of the system in the configuration space. If we 
assume that the displacement of a single particle i is proportional to nil*, n, being the 
number of times particle i was perturbed, then it can be immediately seen that 

(a) The total system displacement 

5 1x;-xy 
i=l 

is the same for all three methods, but 
(b) the average displacement of a particle, 

(5) 

(6) 

is maximal if n, = n2 = .-- = nN, since the Lagrange multiplicator method yields the 
optimal ni’s as the solution of the equations 

that give as a solution for all i 

ni = 2 ni/N. 
i=l 

In fact, the function cny* can be replaced by any (continuous) function whose second 
derivative is negative. 

The beneficial effect of keeping all ni equal can be further demonstrated by 
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showing that under the independence assumption it minimizes the variance of the 
expectation values computed. 

The argument of the theory of group sampling. If a quantity A is the sum of N 
different and independent quantities Ai with standard deviation Di then the variance 
of A is minimal if the number of times Ai is sampled is proportional to Df” [5]. Since 
in our case the average of a quantity over the Markov chain can be regarded as a 
sum of N different quantities, each being the sum of contributions when particle i was 
perturbed and each having the same standard deviations since the particles are iden- 
tical, under the independence assumption the above argument applies. 

In closing, it should be stressed that the above arguments do not prove the 
superiority of the cyclic methods since the effect of correlation between successive 
steps in the Markov chain, which tends to increase the variance, was neglected. 

4.2. Analysis of the Cage-eflect 

The cage-effect is due to te fact that in a dense fluid a move of the particle will 
bring it to the proximity of another particle; thus the next move of the same particle 
is most likely to be in the reverse direction. 

Define P, as the probability that when particle i made a move to the proximity of 
particle j the particle remains at its position until the next perturbation of particle i. 
The conditional probability of particlej remaining unmoved after exactly k pertur- 
bations, Pf, is given by the simple expression 

PF = rk, r< 1. (8) 

Here r is the probability that a perturbation is rejected. We then obtain 

P, = (P;) = 2 Pp;(k), 
k=O 

(9) 

where P:(k) is the probability that particle j was perturbed k times between two 
successive perturbations of i. The expressions for P:(k) for the three methods can be 
obtained from simple combinatorial arguments. For the random method. 

p;(k) = 2-N+ 1). (10) 

For the cyclic method, 
P;(k) = 1 for k= 1, 

=o for k# 1. 

For the shuffled cyclic method, 

(11) 

p;(k) = 4 for k = 0,2, 

=; for k= 1, 

=o for k > 2. 

(12) 
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Substituting Eqs. (lo)-(12) into Eq. (9) we obtain 

P, = l/(2 - r) for random, 

=F- for cyclic, 

= $ + r/2 + 914 for shuffled cyclic. 

(13) 

Simple considerations show that for all r < 1, 

P,(random) > P,(shuffled cyclic) > P,(cyclic). (14) 

The quantity P,., however, is closely related to the magnitude of the cage-effect 
since the ability of the particle j to induce a reverse move of particle i is decreased if 
it is moved. This follows from the fact that in a dense fluid both energetic and 
geometric factors favor a move of particle j pointing away from particle i over a 
move pointing toward particle i. Thus it is plausible to assume that the magnitude of 
the cage-effect, which can be characterised by (cos r), where y is the angle between 
two successive moves of the same particle, follows the inequalities analogous to (14): 

(cos 7) (random) < (cos y) (shuffled cyclic) < (cos y) (cyclic). (15) 

4.3. Numerical Example 

The three methods were compared on a system of 45 Lennard-Jones particles at 
reduced density [* = 0.9 and at reduced temperature p = 2.0, that is, in the super- 
critical region. Face-centered cubic periodic boundary conditions were used with a 
spherical cutoff of 2.0670. The maximum displacement in the x, y, z directions was 
0.30, resulting in a 33-34% acceptance rate. Starting from a random configuration, 
about 1OOK steps were discarded. From that point, 900K were run using the random 
method. The 600K-th configuration was the starting point of a 700K run using the 
shuffled cyclic method. Furthermore, both runs were divided into 1OOK segments and 
the first configuration of each segment was used as the starting configuration of a 
1OOK run using the respective other two methods. Further examination of the data 
led us to exclude the first two segments of the random run from the averaging. 

The following quantities are used to characterize the runs: 

(a) the difference between the average of all the runs, -187.18, and the average 
over the segment considered, (AE); 

(b) the error estimate 2a, computed from 5K block averages by the 
prescription of Wood [ 11; the block averages were found to satisfy statistical 
randomness test; 

(c) the average of the cosine of the angle between two accepted moves, (cos v); 

(d) the averages of the above quantities over all the runs, over the segments 
3-9 and 10-16. 
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The results are collected in Table I. Based on these numbers, the following three 
conclusions appear to us warranted: 

(1) None of the three methods have been found to be consistently more 
accurate than the others. 

(2) Inequality (15) appears to hold on this system rather consistently, although 
the difference is rather small. Also, the difference between the shuffled cyclic and 
cyclic cage-effect is less than the difference between the random and shuflled cage- 
effect. 

(3) The comparison of the averages over the two types of runs suggests that 
there are small but subtle differences between the Markov chain generated by 
different particle selection methods. 

TABLE I 

Numerical Comparison of the Three Methods on LJ Fluid 

Random Cyclic Shuffled cyclic 

(AE) 20 (cos Y) (4 20 (cosy) (AE) 20 (cos 7) 

1 0.03 1.49 -0.158* 
2 2.51 2.81 -0.157* 
3 1.78 1.93 -0.155* 
4 -0.46 1.70 -0.153* 
5 0.75 1.68 -0.151* 
6 -0.03 2.03 -0.154* 
1 -0.58 2.17 -0.161* 
8 -0.04 2.17 -0.149* 
9 1.68 2.61 -0.150 

10 0.49 2.59 -0.157 
11 3.55 2.52 -0.154 
12 0.91 2.31 -0.157 
13 -0.06 2.55 -0.159 
14 2.09 2.12 -0.156 
15 -1.63 2.62 -0.156 
16 1.07 2.10 -0.163 

RN 0.76 2.05 -0.154 
SC 1.40 2.41 -0.157 

ALL 1.08 2.23 -0.156 

1.20 2.35 -0.146 
-0.35 2.49 -0.149 

0.20 2.94 -0.152 
-0.48 2.08 -0.148 

0.13 2.48 -0.150 
-2.42 1.81 -0.148 
-1.79 2.44 -0.150 
-1.51 1.94 -0.148 
-0.87 1.92 -0.147 

0.30 2.35 -0.153 
-1.47 2.21 -0.146 

0.55 2.38 -0.148 
-2.43 2.16 -0.147 
-0.70 2.83 -0.152 

0.34 1.67 -0.143 
0.98 2.41 -0.150 
0.95 2.22 -0.148 
0.96 2.32 -0.149 

-2.69 1.94 -0.152 
0.89 1.70 -0.148 

-0.40 2.01 -0.148 
1.44 1.93 -0.156 

-0.50 1.94 -0.147 
0.61 2.53 -0.150 

-2.16 2.36 -0.146 
0.19 1.94 -0.151 
1.48 1.84 -0.149 
0.27 2.41 -0.154* 

-1.73 2.61 -0.149* 
0.89 1.88 -0.153* 
0.11 2.02 -0.148* 

-0.37 2.39 -0.148* 
1.38 1.89 -0.148* 

-0.80 2.79 -0.156" 
0.97 2.08 -0.150 
0.89 2.28 -0.151 
0.93 2.18 -0.150 

Notes. (a) Segments 1, 2 are excluded from all averaging; (b) the last three lines refer to averages 
over segments 3-9. 1616, and 3-16, respectively; (c) the last configuration of the run, marked with *, 
was used as the starting configuration for the next run with the three methods. 
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5. DISCUSSION 

The present paper introduced a new method for the selection of the particle to be 
moved in the Metropolis Monte Carlo method. The reason for the introduction of the 
new method is that while the cyclic method possesses several advantages over the 
random method, it introduces certain unwanted correlations into the Markov chain 
and in some instances it is not ergodic, in spite of the fact that the random method is 
ergodic on the same system. The suggested shumed cyclic method removes part of 
the unwanted correlation and was proven to be always ergodic whenever the random 
method is ergodic on the same system. Furthermore, the extra computational work 
involved in the implementation of the shuffled cyclic method is negligible since a 
random permutation can be generated in CN steps [6]. The accuracy of the averages 
obtained using the different methods is difficult to compare since, on the one hand, 
the fact that the particles are moved the same number of times is in itself a variance 
reducing factor, and on the other, the increased correlations in the cyclic method are 
working in the opposite direction. Its effect, however, is difficult to assess quan- 
titatively. The numerical example examined here has failed to show significant 
differences in the accuracy of averages. 
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